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Solution 3 by Moti Levy, Rehovot, Israel. Let a = cosh?¢ then our limit
becomes
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Using the asymptotic expression for I' (z + 1),
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Applying L’'Hopital’s rule
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Also solved by Paolo Perfetti, Department of Mathematics, University
Tor Vergata, Rome, Italiy; Moubinool Omarjee, Paris, France and the
proposers.

149. Proposed by Arkady Alt, San Jose, California, USA. Let D be the set of
strictly decreasing sequences of positive real numbers with first term equal to 1.
p+r
For given positive p, r and any zy = (z1,2,...) € D, let S(zn) = > 02, x;}'— if
Tn+1
this series converges and define S(xy) = co otherwise. Find inf{S(zn)|zy € D}.
Solution 1 by Omran Kouba, Higher Institute for Applied Sciences and

Technology Damascus, Syria.
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The answer is A(p,r) = —
r"pP
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Consider a sequence xy) € D. For n > 2 we have, using Holder’s inequality:
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So we have proved that
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On the other hand, using the arithmetic mean-geometric mean inequality, we have
for z,t > 0 that
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Applying this with z = )", 7, «}, and ¢ = p/r we see that
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Or equivalently
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Combining (1) and (2) we get
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and this is also valid for n = 2. Now, let us consider two cases:
o If Y77 a} = +oo then from the inequality
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we conclude that
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o If Y77 a7 ={ < +00, then clearly lim,,_,~ z7, = 0 and again
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Combining the above results and letting n tend to infinity in (3) we conclude that
S(zn) > A(p,r), and consequently

inf{S(zn)|zny € D} > A(p,7r) (4)
Conversely, consider the sequence ay = (ay),>1 defined by a, = a1 with o =
( P )UT < 1. Clearly we have

ptr
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Hence,inf{S(zn)|zy € D} = A(p,r) and the lower bound is in fact attained on a
geometric sequence.

Also solved by the proposer.
150. Proposed by Cornel Ioan Valean, Timis, Romania. Find
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where H,, = Z?=1 1/4 denotes the nth harmonic number.

Solution 1 by Omran Kouba, Higher Institute for Applied Sciences and
Technology Damascus, Syria. We will use a general principle. Consider a an
analytic f in the unit disk D(O, 1), and suppose that its power series expansion is
given by f(z) = >, a,2™. Now, using the integral form of the remainder we may
write for |z| < 1 the following

™0

S k
E : (Ln+kzn+k § :
n=1 n=1

Zk+1

= T/o (1 —t)F fHD) (12)dt

It follows that for |w| < 1 we have
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Now in our case we have a, = H3 /nand f(z) =Y 7, HTsz” Since the series defin-
ing f(—1) does converge by the alternating series test (this is not straightforward
but it can be proved that the coefficients decrease to 0 starting from a certain index),
it is easy to show that uniformly in 2z € (—1,0) we have 377 | @, 1£2" % = O(log” k)



